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Abstract

Let C(t) : I 7→ R2 be a simple closed unit-speed C2 curve in R2 with normal ~n(t). The
curve C generates a distribution Γ which acts on vector fields ~v(x1, x2) : R2 7→ R2 by line
integration according to

Γ(~v) =

∫
~v(C(t)) · ~n(t)dt.

We consider the problem of efficiently approximating such functionals. Suppose we have
a vector basis or frame Φ = (~φµ); then an m-term approximation to Γ can be formed by
selecting m terms (µi : 1 ≤ i ≤ m) and taking

Γ̃m(~v) =

m∑
i=1

Γ(~φµi)[~v, ~φµi ].

Here the µi can be chosen adaptively based on the curve C.
We are interested in finding a vector basis or frame for which the above scheme yields

the highest-quality m-term approximations. Here performance is measured by considering
worst-case error on vector fields which are smooth in an L2 Sobolev sense:

Err(Γ, Γ̃m) = sup{|Γ(~v)− Γ̃m(~v)| : ‖Div(~v)‖2 ≤ 1}.

We establish an isometry between this problem and the problem of approximating ob-
jects with edges in L2 norm. Starting from the recently-introduced tight frames of scalar
curvelets, we construct a vector frame of curvelets for this problem. Invoking results on
the near-optimality of scalar curvelets in representing objects with edges, we argue that
vector curvelets provide near-optimal quality m-term approximations. We show that they
dramatically outperform both wavelet and Fourier-based representations in terms of m-term
approximation error.

The m-term approximations to Γ are built from terms with support approaching more
and more closely the curve C with increasing m; the terms have support obeying the scaling
law width ≈ length2.

Comparable results can be developed, with additional work, for scalar curvelet approxi-
mation in the case of scalar integrands

I(f) =

∫
f(C(t))dt.
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1 Introduction

1.1 Point Evaluation

Consider the Dirac distribution δ on R, which acts on smooth functions to give point evaluation:

〈δ, f〉 = f(0). (1)

It is well-known that δ can be represented at least formally as a series in various bases and
frames. For example, as δ is supported in [−π, π) we may use sinusoids to represent it, getting

δ =
1√
2π

∑
k

〈δ, eikθ〉eikθ

=
1√
2π

∑
k

eikθ (2)

where the equality has an appropriate distributional interpretation. All mathematical scientists
are familiar with this representation, but this familiarity may have dulled our sensitivity to a key
point. This representation of δ is extremely problematic, stemming from the many non-localized
terms of equal intrinsic size. The two sides of equation (2) can only balance owing to a truly
heroic cancellation of the terms on the right.

In another basis or frame, the representation of the Dirac distribution can be fundamentally
better behaved. If we use nice orthonormal wavelets of compact support to represent δ, we have

δ =
∑

I

〈δ, ψI〉ψI (3)

=
∑

I

ψI(0)ψI , (4)

where, for comparability with the Fourier example, the (ψI)I are taken as periodic wavelet
orthobasis for L2[−π, π), and the indices I range, as usual, through the dyadic intervals [k/2j , (k+
1)/2j). Although the equality must still be interpreted in a distributional sense, it is much less
problematic than in the Fourier case. In fact, Daubechies wavelets obey, for appropriate c1 and
c2,

|ψI(x)| ≤ 2j/21{c1I}(x) · c2,

where c1I denotes the dilation of I by a factor of c1 about its midpoint. Hence, the series is
actually sparse. For example, there are only a finite number of nonzero terms at any x 6= 0.
Moreover, the sum can be stratified by scale index j,∑

I

ψI(0)ψI(x) =
∑

j

∑
k

ψj,k(0)ψj,k(x)

and there will be at most C3 nonzero terms at each level j.
The density of the Fourier representation and the sparsity of the wavelet representation are

reflected in the effectiveness of the corresponding bases at representing δ by m-term approxima-
tions. Let W 1

2 (C) denote the ball of functions in L2(−π, π) obeying∫ π

−π

f(t)2dt +
∫ π

−π

f ′(t)2dt ≤ C2.

Think of δ as defined as a distribution acting on such functions f as in (1), and consider m-term
approximations in the Fourier basis

δ̃F
m =

m∑
`=1

c`e
ik`θ.
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and in the wavelet basis

δ̃W
m =

m∑
`=1

a`ψI`
.

Evaluate performance of such approximations by the worst-case error which either approach can
incur on a function f ∈W 1

2 (C). Formally,

Errm(δ,Wavelets) = sup
f∈W 1

2 (C)

inf
I1,...,Im

|〈δ, f〉 − δ̃W
m (f ; I1, . . . , Im)|.

Errm(δ,Fourier) = sup
f∈W 1

2 (C)

inf
k1,...,km

|〈δ, f〉 − δ̃F
m(f ; k1, . . . , km)|.

A simple calculation shows the following:

Errm(δ,Fourier) ³ m−1/2, m→∞,

which exhibits rather slow decay with m, while for a certain C4 > 0,

Errm(δ,Wavelets) ³ exp(−(m/C4)), m→∞,

which exhibits much faster exponential decay.
In short, the wavelet basis gives radically better m-term approximations to δ than does the

Fourier basis. The story is the same for every other point evaluation functional δx. In a sense,
the wavelet basis is ideal for sparse representation of point evaluations.

1.2 Curvilinear Integrals

Let now C : I 7→ R2 denote a simple closed curve in the unit square, of finite length, with two
continuous derivatives, and unit speed parametrization. Let ~n(t) denote the unit normal vector
to C(t) at time t. Associated with the curve C(t) is the linear functional Γ acting on smooth
vector fields ~v(x1, x2) via

Γ(~v) =
∫

~v(C(t)) · ~n(t)dt.

Just as the Dirac distribution was supported on a point, Γ is supported on the curve C.
This functional has a well-known interpretation from vector calculus. If ~v measures a fluid

velocity, then Γ measures the net flux across C per unit time. One could consider alternate curve
↔ functional correspondences, such as the scalar functional

∫
f(C(t))dt, but it appears that the

results are qualitatively similar – see Section 8 below. The analysis turns out to be particularly
straightforward and insightful for Γ.

Just as we asked previously for an optimal approximation to δ, we can now ask for an optimal
m-term approximation to Γ. Suppose, given a vector orthobasis or tight frame Φ, we construct
an m-term approximation to Γ by

Γ̃m(~v) =
m∑

i=1

Γ(~φµi
)[~v, ~φµi

],

where we understand [~v, ~w] =
∑

j〈vj , wj〉, with 〈, 〉 denoting the inner product of L2.
In analogy to the one-dimensional case we could consider Fourier and Wavelets orthobases

for vector functions with components in L2[−π, π)2, getting m-term approximants Γ̃F
m and Γ̃W

m .
To measure quality of approximation, we compare performance on vector fields with component
functions in the ball W 1

2 (C) of functions in L2(−π, π)2 obeying

‖f‖22 +
2∑

j=1

‖ ∂

∂tj
f‖22 ≤ C2.

As a measure of performance, we can set

Errm(Γ,Wavelets) = sup
vj∈W 1

2 (C)

inf
I1,...,Im

|Γ(~v)− Γ̃W
m (~v; I1, . . . , Im)|,
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and similarly for Errm(Γ,Fourier).
In Section 6 below, we show that

Errm(Γ,Fourier) ³ m−1/4, m→∞, (5)

which exhibits rather slow decay with m, while

Errm(Γ,Wavelets) ³ m−1/2, m→∞. (6)

In short wavelets are better than Fourier in representing curves – though the advantage is now far
less dramatic than it was for representing points. In fact, the performance of wavelets, although
better than Fourier methods, is not very good. One wonders if there isn’t something even better
than wavelets for representing curves.

1.3 Curvelets

In this paper, we will show that the rate of m-term approximation of Γ made available by
previously-known bases, such as wavelets and Fourier methods, can be substantially improved.
The authors have recently constructed in [6] a new tight frame for functions in L2(R2) called a
frame of curvelets. Its original purpose was to represent objects with discontinuities along C2

curves.
We construct a vector frame of curvelets based on the principle of biorthogonal decomposition

of the gradient operator. We use that frame to approximate curve-supported functionals Γ and
show that, for each C2 curve C, there is a sequence of m-term approximations constructed using
vector curvelets and obeying, for each δ > 0,

Errm(Γ,vector Curvelets) = O(m−1+δ), m→∞.

This is substantially better than the rate available from Wavelets and Fourier methods.
Moreover, it appears that this rate is essentially optimal. No basis or frame can achieve an

essentially faster rate of convergence than m−1 uniformly on all such curves C.

1.4 Contents

Section 2 gives a rapid exposition of the curvelets construction. Section 3 shows how to construct
vector curvelets giving a biorthogonal decomposition of the gradient operator. Section 4 exhibits
an isometry showing that approximating Γ using vector curvelets is identical to approximating
images with edges using scalar curvelets. Section 5 deploys this isometry by invoking results we
have proven elsewhere to determine the minimax behavior of the error Err

max
C

min
µ1,...µm

Err(Γ, Γ̃m).

Section 6 compares the curvelet approximation to wavelet and Fourier approximations. Section
7 discusses interpretations of these results. Section 8 shows that qualitatively similar results are
available by similar methods for the case of scalar integrands.

2 Curvelet Construction

We now very briefly describe the curvelet construction. There is a difference at large scales
between this construction and the one given in [6].

2.1 Ridgelets

The theory of ridgelets was developed in the Ph.D. Thesis of Emmanuel Candès (1998). In that
work, Candès showed that one could develop a system of analysis based on ridge functions

ψa,b,θ(x1, x2) = a−1/2ψ((x1 cos(θ) + x2 sin(θ)− b)/a). (7)
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He introduced a continuous ridgelet transform Rf (a, b, θ) = 〈ψa,b,θ(x), f〉 with a reproducing
formula and a Parseval relation. He showed how to construct frames, giving stable series expan-
sions in terms of a special discrete collection of ridge functions. The approach was general, and
gave ridgelet frames for functions in L2[0, 1]d in all dimensions d ≥ 2 – For further developments,
see [4, 5].

[9] showed that in two dimensions, by heeding the sampling pattern underlying the ridgelet
frame, one could develop an orthonormal set for L2(R2) having the same applications as the
original ridgelets. The ortho ridgelets are indexed using λ = (j, k, i, `, ε), where j indexes the
ridge scale, k the ridge location, i the angular scale, and ` the angular location; ε is a gender
token. Roughly speaking, the ortho ridgelets look like pieces of ridgelets (7) which are windowed
to lie in discs of radius about 2i; θi,` = `/2i is roughly the orientation parameter, and 2−j is
roughly the thickness.

The ortho-ridgelets have a concrete definition in the Fourier domain. Let (ψj,k(t) : j ∈ Z, k ∈
Z) be an orthonormal basis of Meyer wavelets for L2(R) [13], [14, Engl.Transl. p. 75], and let
(w0

i0`(θ), `=0, . . . , 2i0−1; w1
i,`(θ), i ≥ i0, `=0, . . . , 2i−1) be an orthonormal basis for L2[0, 2π)

made of periodized Lemarié scaling functions w0
i0,` at level i0 and periodized Meyer wavelets w1

i`

at levels i ≥ i0 [14, Engl.Transl. p. 113]. Let ψ̂j,k(ω) denote the Fourier transform of ψj,k(t),
and define ridgelets ρλ(x), λ = (j, k; i, `, ε) as functions of x ∈ R2 in the frequency-domain

ρ̂λ(ξ) = |ξ|− 1
2 (ψ̂j,k(|ξ|)wε

i,`(θ) + ψ̂j,k(−|ξ|)wε
i,`(θ + π))/2 . (8)

Here the indices run as follows: j, k ∈ Z, ` = 0, . . . , 2i−1− 1; i ≥ i0, and, if ε = 0, i = max(i0, j),
while if ε = 1, i ≥ max(i0, j). Notice the restrictions on the range of i, `. Let Λ denote the set
of all such indices λ.

2.2 Multiscale Ridgelets

Think of ortho ridgelets as objects which have a “length” of about 1 and a “width” which can
be arbitrarily fine. The multiscale ridgelet system renormalizes and transports such objects, so
that one has a system of elements at all lengths and all finer widths.

The construction begins with a smooth partition of energy function w(x1, x2) ≥ 0, w ∈
C∞0 ([−1, 1]2) obeying

∑
k1,k2

w2(x1− k1, x2− k2) ≡ 1. Define a transport operator, so that with
index Q indicating a dyadic square Q = (s, k1, k2) of the form [k1/2s, (k1 +1)/2s)× [k2/2s, (k2 +
1)/2s), by (TQf)(x1, x2) = f(2sx1−k1, 2sx2−k2). The Multiscale Ridgelet with index µ = (Q, λ)
is then

ψµ = 2s · TQ(w · ρλ)

In short, one transports the normalized, windowed orthoridgelet.
LettingQs denote the dyadic squares of side 2−s, we can define the subcollection of Monoscale

Ridgelets at scale s:
Ms = {(Q, λ) : Q ∈ Qs, λ ∈ Λ}

It is immediate from the orthonormality of the ridgelets that each system of monoscale ridgelets
makes a tight frame, in particular obeying the Parseval relation∑

µ∈Ms

〈ψµ, f〉2 = ‖f‖2L2

It follows that the dictionary of multiscale ridgelets at all scales, indexed by

M = ∪s≥1Ms

is not frameable, as we have energy blow-up:∑
µ∈M
〈ψµ, f〉2 =∞. (9)

The Multiscale Ridgelets dictionary is simply too massive to form a good analyzing set. It lacks
inter-scale orthogonality – ψ(Q,λ) is not typically orthogonal to ψ(Q′,λ′) if Q and Q′ are squares

5



at different scales and overlapping locations. In analyzing a function using this dictionary, the
repeated interactions with all different scales causes energy blow-up (9).

The construction of curvelets solves this problem by in effect disallowing the full richness of
the Multiscale Ridgelets dictionary. Instead of allowing all different combinations of ‘lengths’
and ‘widths’, we allow only those where width ≈ length2.

2.3 Subband Filtering

Our remedy to the ‘energy blow-up’ (9) is to decompose f into subbands using standard filterbank
ideas. Then we assign one specific monoscale dictionaryMs to analyze one specific (and specially
chosen) subband.

We define coronae of frequencies |ξ| ∈ [22s, 22s+2], and subband filters Ds extracting com-
ponents of f in the indicated subbands; a filter P0 deals with frequencies |ξ| ≤ 1. The filters
decompose the energy exactly into subbands:

‖f‖22 = ‖P0f‖22 +
∑

s

‖Dsf‖22.

The construction of such operators is standard [17, 12, 13]; the coronization oriented around
powers 22s is nonstandard – and essential for us. Explicitly, we build a sequence of filters Φ0 and
Ψ2s = 24sΨ(22s·), s = 0, 1, 2, . . . with the following properties: Φ0 is a lowpass filter concentrated
near frequencies |ξ| ≤ 1; Ψ2s is bandpass, concentrated near |ξ| ∈ [22s, 22s+2]; and we have

|Φ̂0(ξ)|2 +
∑
s≥0

|Ψ̂(2−2sξ)|2 = 1, ∀ξ.

Hence, Ds is simply the convolution operator Dsf = Ψ2s ∗ f .

2.4 Definition of Curvelet Transform

Assembling the above ingredients, we are able to sketch the definition of the Curvelet transform.
We let M ′ consist of M merged with the collection of integral triples (s, k1, k2, ε) where s ≤ 0,
(s, k1, k2) indexes coarse scale dyadic squares in the plane of side 2−s ≥ 1, ε ∈ {01, 10, 11}2 is a
gender indicator.

The curvelet transform is a map L2(R2) 7→ `2(M′), yielding curvelet coefficients (αµ : µ ∈
M ′). These come in two types.

At coarse scales we have wavelet coefficients.

αµ = 〈Ws,k1,k2,ε, P0f〉, µ = (s, k1, k2) ∈M ′\M

where each Ws,k1,k2,ε is a Meyer wavelet, while at fine scale we have Multiscale Ridgelet coeffi-
cients of the bandpass filtered object:

αµ = 〈Dsf, ψµ〉, µ ∈Ms, s = 1, 2, . . . .

Note well that for s > 0, each coefficient associated to scale 2−s derives from the subband filtered
version of f – Dsf – and not from f .

Several properties are immediate;

• Tight Frame:
‖f‖22 =

∑
µ∈M ′

|αµ|2.

• Existence of Coefficient Representers (Frame Elements): There are γµ ∈ L2(R2) so that

αµ ≡ 〈f, γµ〉.
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• L2 Reconstruction Formula:
f =

∑
µ∈M ′

〈f, γµ〉γµ.

• Formula for Frame Elements: for s ≤ 0, γµ = P0Ws,k1,k2,ε, while for s > 0,

γµ = Dsψµ, µ ∈Ms.

In short, fine-scale curvelets are obtained by bandpass filtering of Multiscale Ridgelets
coefficients where the passband is rigidly linked to the scale of spatial localization.

• Anisotropy Scaling Law: By linking the filter passband |ξ| ≈ 22s to the scale of spatial
localization 2−s imposes that (1) most curvelets are negligible in norm (most multiscale
ridgelets do not survive the bandpass filtering Ds); (2) the nonnegligible curvelets obey
length ≈ 2−s while width ≈ 2−2s. In short, the system obeys approximately the scaling
relationship

width ≈ length2.

Note: it is at this last step that our 22s coronization scheme comes fully into play.

• Oscillatory Nature. Both for s > 0 and s ≤ 0, each frame element a Fourier transform
supported in an annulus away from 0.

3 Vector Curvelet Frames for ∇
We define now a pair of vector frames ~w±µ associated to biorthogonal decomposition of the grad
operator ∇. Define the sequence of multipliers

κs =
{

2−s s < 0
2−2s s ≥ 0,

and derive the vector frame (~w+
µ ) from the curvelet frame by differentiation

~w+
µ (x) = κs · ∇γµ. (10)

This makes sense because curvelet frame elements are smooth and of rapid decay.
Define each member of the dual vector frame (~w−µ ) componentwise in the frequency domain,

with j-th component

ŵ−µ,j(ξ) = κ−1
s · γ̂µ(ξ) · iξj

‖ξ‖2 , ξ ∈ supp(γ̂µ(ξ)). (11)

This makes sense because each γµ omits the origin from its support in the frequency domain.
Defining the divergence Div(~v) =

∑
j

∂
∂xj

vj , we then have

κs ·Div(~w−µ ) = γµ, (12)

which bears comparison with (10).
We will also need the definition of the Riesz transforms [16] Rj for j = 1, 2:

Rj(f)(x) =
1

(2π)2

∫
f̂(ξ)

iξj

‖ξ‖e
iξ′xdξ.

These are bounded operators of L2(R2) which obey the Pythagorean relation∑
j

‖Rj(f)‖22 = ‖f‖22.
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Definition 1 We say that a vector field ~v with components vj in L2(R2) for j = 1, 2 is irrota-
tional if the components obey

‖R1(v2)−R2(v1)‖2 = 0.

The irrotational vector fields have a special structure:

Lemma 1 Given a vector field ~v whose components arise according to

vj = Rj(V ), j = 1, 2.

where V is an L2(R2) function, then ~v is irrotational with L2(R2) components.
Given an irrotational vector field ~v(x1, x2) with L2(R2) components, there is a scalar function

V ∈ L2(R2) with
vj = Rj(V ), j = 1, 2. (13)

Moreover, we have the Pythagorean relation∑
j

‖vj‖22 = ‖V ‖22. (14)

Proof. To see the first half, substitute into the definition of irrotationality, getting:

‖R1(v2)−R2(v1)‖2 = ‖R1(R2(V ))−R2(R1(V ))‖2.

Now as the Ri are Fourier multipliers, they commute: R1R2 ≡ R2R1. Hence ‖R1(R2(V )) −
R2(R1(V ))‖2 = 0.

To see the second half, note that the Fourier transforms of components of an irrotational
field obey

ξ1 · v̂2(ξ) = ξ2 · v̂1(ξ) a.e. dξ.

It follows that at a.e. ξ, the vector (v̂1(ξ), v̂2(ξ)) lies in the subspace spanned by (ξ1, ξ2). Letting
~ρ(ξ) = (ξ1/‖ξ‖, ξ2/‖ξ‖), and defining a.e. ξ the function

V̂ (ξ) = (ξ1v̂1(ξ) + ξ2v̂2(ξ))/‖ξ‖,

it follows that a.e. ξ we have
(v̂1(ξ), v̂2(ξ)) = V̂ (ξ) · ρ(ξ).

The desired result (13) is just the same equation in the original domain. The Pythagorean
relation is immediate. QED.

We note that the ~w±µ are irrotational. Indeed, ~w+
µ arises as the gradient field of a scalar

function, and any such field is irrotational: the Fourier representation

(
∂

∂xj
f )̂ (ξ) = (iξj)f̂(ξ)

shows that V is given by V̂ (ξ) = f̂(ξ)‖ξ‖.
As for ~w−µ the Fourier domain formula (12) may be viewed as exhibiting ~w−µ explicitly as

such as function, with V̂ (ξ) ∝ γ̂µ(ξ)/‖ξ‖.
The following result shows that we can represent all irrotational fields with the (~w±µ ),

Theorem 1 The systems (~w+
µ )µ and (~w−µ )µ are vector frames for the space of irrotational vector

fields with components in L2(R2). For each choice of sign for ± we obtain a system obeying the
almost orthogonality

(
∑

j

‖
∑

µ

aµw±µ,j‖22)1/2 ≤ C · (
∑

µ

a2
µ)1/2 (15)

along with the L2 norm equivalence:∑
µ

[~w±µ , ~v]2 ³ (
∑

j

‖vj‖22)1/2 ∀ irrotational fields ~v. (16)
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In addition the two vector frames are quasi-biorthogonal:

[~w+
µ , ~w−µ′ ] = 2s′−s · 〈γµ, γµ′〉, µ, µ′ ∈M (17)

where we understand
[~w+

µ , ~w−µ′ ] =
∑

j

〈w+
µ,j , w

−
µ′,j〉.

The proof of Theorem 1 is effectively a repeated application of homogeneous Fourier multiplier
ideas. We begin with the biorthogonality (17), note that we have the Fourier side definition of
w+

µ,j :

ŵ+
µ,j(ξ) = κs · γ̂µ(ξ) · iξj , ∀ξ. (18)

Hence, passing to the Frequency side,

〈w+
µ,j , w

−
µ′,j〉 =

1
(2π)2

∫
ŵ+

µ,j(ξ)ŵ
−
µ′,j(ξ)dξ (19)

=
1

(2π)2

∫
κs · γ̂µ(ξ)iξj · κ−1

s · γ̂µ′(ξ)
−iξj

‖ξ‖2 dξ (20)

=
1

(2π)2

∫
γ̂µ(ξ) · γ̂µ′(ξ) ·

ξ2
j

‖ξ‖2 dξ, (21)

Hence,

∑
j

〈w+
µ,j , w

−
µ′,j〉 =

1
(2π)2

∫
γ̂µ(ξ) · γ̂µ′(ξ) ·

∑
j

ξ2
j

‖ξ‖2 dξ (22)

= 〈γµ, γµ′〉, (23)

giving (17).
To get the frame properties (15)-(16), we use the fact that curvelets relate well to fractional

powers of the Laplacian. The usual Laplacian ∆ =
∑2

i=1
δ2

δx2
i

corresponds to the Fourier multi-

plier (∆f )̂ (ξ) = −|ξ|2 · f̂(ξ); it makes sense therefore to define fractional powers of the Laplacian
by the Fourier multiplier

((−∆)αf )̂ (ξ) = |ξ|2α · f̂(ξ).

Following the article [7] we define, for a curvelet γµ(x1, x2), two companions c±µ (x1, x2) ac-
cording to

c±µ = κ∓1
s (−∆)±1/2γµ,

where of course s refers to the scale index occupying the first slot (s, k1, k2, j, k, i, `, ε) in the
curvelet index µ. Because γµ is effectively concentrated in the frequency domain near |ξ| ≈ 22s,
we have 22s|ξ| ≈ 1 through the bulk of the frequency domain support of γµ and hence we
anticipate ‖c±µ ‖ ≈ ‖γµ‖. The following result can be proved along the lines of a similar result in
[7].

Theorem 2 The systems (c+
µ )µ and (c−µ )µ are frames for L2(R2). For either choice of sign ±,

one obtains a system with almost orthogonality

‖
∑

µ

aµc±µ ‖2 ≤ C · (
∑

µ

a2
µ)1/2, (24)

and with L2 norm equivalence: ∑
µ

〈c±µ , f〉2 ³ ‖f‖22. (25)

In addition, they are quasi-biorthogonal:

〈c+
µ , c−µ′〉 = 2s′−s〈γµ, γµ′〉. (26)
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To get now (15) from Theorem 2, we observe that

w±µ,j = Rj(c±µ ), j = 1, 2. (27)

From this and the Pythagorean relation for Riesz transforms we have∑
j

‖
∑

µ

aµw±µ,j‖22 = ‖
∑

µ

aµc±µ ‖22.

Thus the frame relation (15) for (~w±µ ) follows from (24) for (c±µ ).
We now use Lemma 1 to get (16). Given a vector field ~v it furnsihes an associated scalar

field V with

∑
µ

[~w±µ , ~v]2 =
∑

µ

∑
j

〈Rj(c±µ ), vj〉

2

=
∑

µ

∑
j

〈Rj(c±µ ), Rj(V )〉

2

The Pythagorean relation for the Riesz transforms gives∑
j

〈Rj(c±µ ), Rj(V )〉 = 〈c±µ , V 〉.

Substituting into the preceding display, we have an isometry between the w±µ coefficients of ~v
and the c±µ coefficients of V : ∑

µ

[~w±µ , ~v]2 =
∑

µ

〈c±µ , V 〉2.

Finally, ∑
µ

〈c±µ , V 〉2 ³ ‖V ‖22

=
∑

j

‖vj‖22,

where we used the frame property (25) of the companions (c±µ ) and the Pythagorean relation
(14).

Theorem 3 We have the reproducing formula

∇f =
∑

µ

[∇f, ~w−µ ]~w+
µ (28)

valid for all sufficiently nice f , where we understand

[∇f, ~w−µ ] =
∑

j

〈 ∂

∂xj
f, w−µ,j〉.

Suppose that f is a finite superposition of γµ’s. Evidently,

∇f =
∑

µ

〈f, γµ〉∇γµ (29)

=
∑

µ

κ−1
s · 〈f, γµ〉 · ~w+

µ (30)

We now show that
κ−1

s · 〈f, γµ〉 = [∇f, ~w−µ ]. (31)

10



We start from an integration-by-parts:

〈 ∂

∂xj
f, w−µ,j〉 = −〈f,

∂

∂xj
w−µ,j〉.

Passing to the frequency side, we have

〈f,
∂

∂xj
w−µ,j〉 =

κ−1
s

(2π)2

∫
f̂(ξ)iξj γ̂µ(ξ)

−iξj

‖ξ‖2 dξ (32)

=
κ−1

s

(2π)2

∫
f̂(ξ)γ̂µ(ξ)

ξ2
j

‖ξ‖2 dξ (33)

= −κ−1
s · 〈Rj(f), Rj(γµ)〉. (34)

The Pythagorean relation for the Riesz transforms gives∑
j

〈Rj(f), Rj(γµ)〉 = 〈f, γµ〉

and the proof is complete.

4 A Vector/Scalar Isometry

Let B be a region in R2 with smooth simple boundary curve C. Let Γ be the corresponding
linear functional. We will see below that in a distributional sense,

Γ =
∑

Γ(~w−µ )~w+
µ . (35)

Suppose that we build an m-term approximation Γ̃m using terms µ1, . . . , µm:

Γ̃m =
m∑

i=1

Γ(~w−µi
)~w+

µi
. (36)

To see how good an approximation Γ̃m might be, we consider its maximal deviation from Γ
over smooth vector fields:

Err(Γ, Γ̃m) = sup{|Γ(~v)− Γ̃m(~v)| : ‖Div(~v)‖2 ≤ 1}.

It turns out that there is an isometry linking performance of m-term vector curvelet approx-
imation to Γ with performance of an m-term scalar curvelet approximation to B.

Theorem 4 Let µ1, . . . , µm be given. Consider the m-term approximation to f = 1B by curvelets,
formed according to

f̃m =
m∑

i=1

〈1B , γµi〉γµi .

Let Γ̃m be as in (36). Then
Err(Γ, Γ̃m) = ‖f − f̃m‖2.

In this section, we develop the proof of this theorem, which is really the application of two
specific isometries.

4.1 Gauss-Green Theorem

Let B be a region in the plane with C2 boundary, and let φ be a smooth function. Then∫
B

∆φ =
∫

∂B

~n · ∇φ.

11



Here ∂B is the boundary of B, and n is the normal field along the boundary.
Reinterpret this as follows. Suppose B is a region with C2 boundary ∂B and that C(t) is a

unit speed parametrization of the boundary. Let Γ be the corresponding linear functional

Γ(~v) =
∫

~v(C(t)) · ~n(t)dt.

Then
〈1B , ∆φ〉 = Γ(∇φ). (37)

In short, for smooth functions φ, integrals over B can be related to the functional Γ applied to
related functions of ∇φ.

Recall the formal identity from vector calculus ∆ = ∇ · ∇, which can be stated correctly for
nice f and g as

〈f, ∆g〉 = −[∇f,∇g].

From a modern functional analysis perspective, we may use a distributional version of this, where
f is not smooth, to rewrite (37), giving

Γ(∇φ) = 〈1B , ∆φ〉 = −[∇1B ,∇φ],

identifying Γ = −∇1B in a distributional sense. Applying now (28) from Theorem 3, we get
(35).

4.2 Evaluation Isometry

Let ~W denote a vector field on R2 and consider the seminorm

||| ~W ||| = sup{[ ~W,~v] : ‖Div(~v)‖2 ≤ 1}.

This is well-defined on smooth vector fields of compact support having zero mean value.
It is a simple exercise in integration by parts – again reducing to the formal identity ∆ = ∇·∇

– to see that we have the isometry
|||∇φ||| = ‖φ‖2, (38)

valid whenever φ is smooth and of compact support.

4.3 m-term Approximation Isometry

We are now able to prove Theorem 4.
Owing to the definition of the norm ||| · |||, we may write

Err(Γ, Γ̃m) = |||Γ− Γ̃m|||.

Owing to (37) and the definition of ~w−µ , we can write

Γ(~w−µ ) = κ−1
s 〈1B , γµ〉.

Applying this,

|||Γ− Γ̃m||| = |||∇1B −
m∑

i=1

Γ(~w−µi
)w+

µi
|||

= |||∇1B −
m∑

i=1

Γ(~w−µi
)κs · ∇γµi |||

= |||∇(1B −
m∑

i=1

Γ(~w−µi
)κsγµi

)|||

= ‖1B −
m∑

i=1

〈1B , γµi〉γµi‖2,

the last step invoking (38).

12



5 Exploiting the Vector/Scalar Isometry

The problem of approximating an indicator 1B by curvelets when B has a C2 boundary has
recently been studied by Candès and Donoho (1999). They showed the following.

Theorem 5 [6] For m > 0 define the m-term approximation to f = 1B as follows. Let µ1, . . . ,
µm denote the indices of the m largest-amplitude curvelet coefficients of f . Define an m-term
approximation to f by

f̃m =
m∑

i=1

〈f, γµi
〉γµi

.

Then if B is a subset of the unit square with a simple C2 boundary curve C, and the C2 norm
of t 7→ C(t) is at most A, then

‖f − f̃m‖2 ≤ C(A) · log(m)3/2m−1,

where C(A) denotes a constant depending only on A.

Combining this with our isometry, we have the following.

Theorem 6 Let C be a simple C2 unit-speed curve, and suppose the C2 norm of t 7→ C(t) is at
most A. Let Γ be the corresponding curve integral. For each m > 0, let µ1, . . . , µm denote the
indices of the m largest-amplitude vector curvelet coefficients of Γ (i.e. the m-largest amplitude
Γ(~wµ)). Define an m-term approximation to Γ by

Γ̃m =
m∑

i=1

Γ(~w−µi
)~w+

µi
.

Then
Err(Γ, Γ̃m) ≤ C(A) · log(m)3/2m−1,

where C(A) denotes a constant depending only on A.

6 Comparison: Fourier and Wavelet Representations

To place Theorem 6 in perspective, we now sketch comparable constructions for sinusoids and
for wavelets, justifying the results of the introduction.

6.1 Vector Fourier Representation

Let the domain of interest be [−π, π)2; with k denoting the pair (k1, k2), let K denote the
collection of nonzero pairs. With ek(t) denoting the complex exponential ei(k1t1+k2t2)/(2π), the
collection (ek)k∈K is an orthonormal set, but not a basis, as it is missing the constant function
e0,0.

With ‖k‖ = (k2
1 + k2

2)
1/2, let ~Ek(t1, t2) be a vector field on [−π, π)2, defined by

~Ek(t) = ek(t) · k/‖k‖, k ∈ K.

Then we have
Div( ~Ek) = ‖k‖ · ek,

and
∇ek = ‖k‖ · ~Ek

and
[ ~Ek(t), ~Ek′(t)] = δk,k′ .

13



This system makes a tight frame giving a sort of diagonal representation of ∇:

∇f =
∑
k

[∇f, ~Ek] ~Ek.

We will use the vanishing-mean system (~Ek)k∈K to represent Γ; we write tentatively

Γ =
∑
k∈K

Γ( ~Ek) ~Ek.

At first glance, this expansion seems to omit a necessary component at zero frequency k = (0, 0).
However, this turns out not to be needed, because of the following.

Lemma 2 Let B be a region in the plane with boundary curve C, and let Γ denote the corre-
sponding curvilinear integral. Then for any constant vector field ~c,

Γ(~c) = 0.

The lemma is quite clear from the net flux interpretation of Γ. As Div(~c) = 0, the net flux
into the region B must vanish.

For the m-term approximation

Γ̃m =
m∑

i=1

Γ( ~Ek(i)) ~Ek(i),

we can again derive the isometry

Err(Γ, Γ̃m) = ‖f0 − f̃m‖2

where f0 = 1B − 〈1B , e0,0〉e0,0 is a zero-mean version of the indicator of B and where

f̃m =
m∑

i=1

〈f0, ek(i)〉ek(i).

The claim (5) of the introduction follows from a simple observation: Let B be a region
with smooth C2 boundary having nonvanishing curvature. Then the Fourier coefficients obey
f̂k ³ ‖k‖−3/2 as ‖k‖ → ∞. The typical example of this is given by the indicator of a disk, whose
Fourier representation involves Bessel functions. It follows that, in general, there are O(R2)
coefficients of size ≥ R−3/2. Now as the system of complex exponentials is orthonormal, the best
m-term approximation is built from the m terms having the m largest amplitudes. It follows
that

‖f − f̃m‖2 ³ m−1/4.

This establishes (5).

6.2 Vector Wavelet Representation

Now let the domain be R2 and consider an orthobasis of Meyer wavelets, (ψs,k1,k2,ε : s, k1, k2 ∈
Z), where s is a scale index, k1,k2 are position indices and ε is a bivariate gender indicator. For
short, we put I = (s, k1, k2, ε)

We define associated vector fields via Fourier multiplier methods as in Section 3. With
κs = 2−s, we let

~φ+
I = κs · ∇ψI ,

and we define the vector field ~φ−I componentwise by

(~φ−I )j = κ−1
s ·Rj((−∆)−1/2ψI),

with Rj the j-th Riesz transform and (−∆)−1/2 the appropriate fractional Laplacian.

14



This pair of systems again makes a pair of biorthogonal frames, and we may write formally

Γ =
∑

I

Γ(~φ−I )~φ+
I .

For the m-term approximation

Γ̃m =
m∑

i=1

Γ(~φ−I(i))~φ
+
I(i),

we can again derive the isometry

Err(Γ, Γ̃m) = ‖f − f̃m‖2

where f = 1B and where

f̃m =
m∑

i=1

〈f, ψI(i)〉ψI(i).

The claim (6) of the introduction follows from a simple observation: Let B be a region
with smooth C2 boundary having nonvanishing curvature. Then there are order 2s Wavelet
coefficients at scale 2−s which correspond to spatial locations ‘on the curve’, and these wavelet
coefficients are of size ≈ 2−s. It follows that, in general, there are O(N) coefficients of size
≥ c · N−1. Now as the system of wavelets is orthonormal, the best m-term approximation is
built from the m terms having the m largest amplitudes. It follows that

‖f − f̃m‖2 ³ m−1/2.

This establishes (6).

7 Discussion

7.1 Optimality of These Results

We know, as explained in [6, 8], that the result quoted in Theorem 5 is near optimal. That is, no
well-posed system of representation (even allowing substantial adaptation) can do better than
the rate 1/m in approximating objects with edges; and the curvelet system does essentially this
well (except for the log terms).

This seems to imply that the best possible rate of m-term approximation of curvilinear
integrals Γ cannot converge faster than a 1/m rate in general. However, what we have shown is
actually not quite that strong.

Unfortunately the edges/curvilinear integrals isometry does not quite settle the question of
optimal m-term approximation of Γ. For a comprehensive answer, we would need an independent
lower bound for the problem of m-term approximation of Γ. Without this there remains the
possibility that some method of direct approximation to Γ could be invented to which the
isometry cannot be applied, and for which no corresponding method of approximation of f
existed, and for which lower bounds for approximation of f would not be relevant.

7.2 Eulerian-Lagrangian Perspective

Our results are of most interest in connection with approximating a family of integrals, rather
than a single integral. Suppose we have a sequence of vector fields ~vi, and a collection of integrals
Γ1, . . . ΓN which we may like to evaluate, and which are of quite general form. For example, we
might have a sequence of evolving curves Cn, n = 1, . . . , N . Then an interesting strategy for this
evaluation would be to expand both the vector fields and the integrals into the vector curvelet
frame and exploit the coefficient sparsity of the Γn to calculate the integrals rapidly.

Thus we are adopting a single coordinate system for representing these curvilinear integrals;
this is a kind of Eulerian perspective. In contrast, an approach which attempted to build a
representation specifically driven by the curves Cn would be Lagrangian. Our opinion is that
there may be little advantage to doing so; compare [8] for a clearer exposition on this point.
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7.3 Interpretation of the Expansion

The vector curvelet expansion synthesizes the singular functional using terms obeying the scaling
law width ≈ length2, clustering more and more tightly about the curve at fine scales. An m-term
approximation represents Γ as a smooth vector field peaking very strongly in the vicinity of the
curve C. The functional Γ̃m(~v) therefore uses information about ~v not just on the curve on C but
also in a neighborhood about the curve; this neighborhood shrinks as successively more terms
are included in the approximation.

8 Scalar Integrands

Until now, we have focused on curvilinear integrals associated with vector integrands. The same
methods can give results for scalar integrals acting on functions,

I(f) =
∫

f(C(t))dt

where again C(t) is a simple unit-speed C2 curve bounding a closed region B, which is contained
entirely inside [−1, 1]2.

In this setting, suppose we have a pair of dual frames with synthesizing elements (φµ) and
analyzing elements (ϕµ). We consider methods which build m-term approximations of the form

Ĩm(f) =
m∑

i=1

I(ϕµi)φµi , (39)

where the µi can be chosen adaptively based on the curve C. We are interested in finding a basis or
frame which, when used in the above scheme, yields the highest-quality m-term approximations.
We measure performance according to

Err(I, Ĩm) = sup{|I(f)− Ĩm(f)| : ‖∆f‖2 ≤ 1}.

In short, we are asking that the m-term approximation reproduce the integral accurately for all
sufficiently smooth functions, where smoothness is measured by the L2 size of the Laplacian.

8.1 Isometry with L2 Curvelet Approximation

In analogy with the vector case, we can establish an isometry between this problem and a problem
of approximation of a piecewise smooth object with a singularity along a curve. Given a curve
C, our plan is to formally associate a corresponding continuous function H(x1, x2) which we use
curvelets to approximate in L2. Then, we observe that there is a formal isometry, showing that
when we approximate H well in L2 norm by curvelets, then we approximate I well by dual
curvelets according to the Err metric. Making this work out completely and not just formally
in this case will require some adjustments to approximation scheme (39).

The key steps in this process are as follows.

• Frame Construction. Starting with curvelets (γµ), we can build a pair of frames in a
fashion similar to the cµ functions. With the powers of the Laplacian (−∆)α defined in
the obvious way, set

φ+
µ = 2−4s(−∆)γµ,

φ−µ = 2+4s(−∆)−1γµ,

The resulting systems obey inequalities exactly paralleling those in Theorem 2. With
constants κs = 2−4s at positive s and 2−s at negative s, they make a biorthogonal decom-
position of the Laplacian ∆:

∆f =
∑

µ

κ−1
s · 〈∆f, φ−µ 〉φ+

µ
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• Induced Potential.

Given the curve C, consider the object H defined on R2 by

H(x) =
∫

log(||x− C(s)||)ds.

This is a C∞ function on R2\Image(C), which, as log(r) is the fundamental solution of
Laplace’s equation, satisfies

∆H = I,

in the distributional sense. In fact, H is the electrostatic potential associated with a uniform
distribution of charges on C. For more information on potential theory and Laplace’s
equation, see e.g. [1, 15]. We wish to exploit the fact that H solves this PDE, and the
fact that our error measure Err involves the same Laplacian ∆, to obtain an isometry of
m-term approximation problems.

• Moment Matching. Unfortunately, the potential H is not in L2: it has growth O(log(||x||))
at ∞; see the example below. We desperately need the L2 property for our approach to
make sense. To obtain this, we construct a special function G “matching” the asymptotic
growth of H and subtract it off. To get G, we construct g with these properties:

– g is C∞ and of rapid decay.

– g is in the span of the curvelets (γλ) for s < 0. Essentially, it is a combination of
wavelets at coarse scales only.

– g matches the low-order moments of I: for every linear polynomial π(x) = a + bx1 +
cx2,

I(π) = 〈g, π〉.

We then define G as the solution to
∆G = g;

this may be obtained from the convolution log(r) ? g. It is easily shown that G is C∞ and
of slow growth at ∞. In fact, it has asymptotic growth properties matching H, so that
H −G is in L2. (Of course much more is true).

• Compensation. Define now the compensated object

H0 = H −G.

This belongs to L2; in fact, it is of rapid decay at ∞ and is C∞ away from the curve C.
Moreover,

∆H0 = I − g = I0, say.

Hence, while I does not correspond to an L2 object, a smooth perturbation I0 does.

• m-term Approximation to H0. Now we use curvelets to approximate H0. In fact, H0 is
a highly regular object, C∞ except on the curve C, where it exhibits a cusp singularity.
Enumerate the curvelets as γµi

in order of decreasing curvelet coefficients of h; then consider
the m-term approximation:

H̃0
m =

m∑
i=1

〈H0, γµi
〉γµi

.

• m-term approximation to I0. Now we use dual curvelets to approximate I0. Take the
coefficients 〈I0, φ−µ 〉κs arranged in decreasing magnitude order; and define

Ĩ0
m =

m∑
i=1

〈I0, φ−µi
〉φ+

µi
.
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• Correspondence. We note that Ĩ0
m = ∆H̃0

m; the point is simply that the dual curvelets were
constructed so that (1) the same terms get selected as the m terms in the approximation,

〈∆f, φ−µ 〉κs = 〈f, γµ〉
and (2) the corresponding terms agree:

〈∆f, φ−µ 〉φ+
µ = 〈f, γµ〉∆γµ,

giving term-by-term equality of an m-term sum.

• Isometry. We finally have

‖H0 − H̃0
m‖2 = sup{〈H0 − H̃0

m, f〉 : ‖f‖2 ≤ 1}
= sup{〈H0 − H̃0

m, ∆F 〉 : ‖∆F‖2 ≤ 1}
= sup{〈∆(H0 − H̃0

m), F 〉 : ‖∆F‖2 ≤ 1}
= sup{〈I0 − Ĩ0

m, F 〉 : ‖∆F‖2 ≤ 1}
= Err(I0, Ĩ0

m). (40)

To the same extent that we can approximate H0 by curvelets, we can approximate the
perturbed curvilinear integral I0 by operator-biorthogonal curvelets, with the same number
of terms and the same error.

• m + 1-term Approximation to I. Now we translate (40) into a result about approximating
I itself. Consider the m + 1-term approximant

Ĩm+1 = g +
m∑

i=1

〈I0, φ−µi
〉φ+

µi
. (41)

Now obviously
Err(I0, Ĩ0

m) = Err(I, Ĩm+1).

Hence, the m + 1-term approximation to I has an error identical to the m term approxi-
mation to I0.
To make this approximation more familiar, note that at fine scales,

〈I0, φ−µ 〉 = 〈I, φ−µ 〉, ∀s > 0.

Hence, if we define coefficients

aµ =
{
〈I, φ−µ 〉, s > 0
〈I − g, φ−µ 〉 s ≤ 0,

the approximation scheme (41) Ĩm+1 has the form

Ĩm+1 = g +
m∑

i=1

aµiφ
+
µi

.

It involves an m-term approximation where coefficients at coarse scales are lightly modified.
To summarize,

‖H0 − H̃0
m‖2 = Err(I, Ĩm+1). (42)

To the same extent that we can approximate the object H0 by curvelets, we can approx-
imate the perturbed curvilinear integral I by operator-biorthogonal curvelets, with the
same number of terms and the same error.

We conclude that whatever the rate of L2-approximation to H0 using curvelets, we have the
same rate of Err-approximation to I by dual curvelets — provided we expand our approximation
scheme to have the form (41)

The study of L2 approximation to H0 using curvelets is not covered by the existing analysis
in [6], which focused on objects with discontinuities along curves. For a general curve C, H0 is
actually continuous, and is in fact Lipschitz. The object H0 has a singularity along C, but it
is not a simple discontinuity; instead ∇H0 has a discontinuity across C. It turns out that the
techniques of [6] can yield results in this setting.
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8.2 An Example: the Circle

Let our curve traverse the unit circle: C(t) = (cos(t), sin(t)) defined on t ∈ [0, 2π). Then

H(x) = log+ ||x||,

and the gradient is defined everywhere off the unit circle, with

∇H(x) = ∇ log+ ||x|| =
{

0 ||x|| < 1,
x/||x||2 ||x|| > 1,

Let now Hj(x) = ∂
∂xj

H(x) denote the j-th component of ∇H, for j = 1, 2. There exists a

well-defined function H̃j which is C∞(R2) and such that

Hj(x) = 1{||x||>1} · H̃j(x).

In short, each component Hj has a representation as a C∞ function which has been mutilated
by multiplication by the indicator of a disc.

Windowed versions of such mutilated objects were studied in the article [6], and the tech-
niques developed there give immediately information about the sparsity properties of the curvelet
coefficients of windowed versions of Hj . These in turn can be used to infer sparsity properties
of the curvelet coefficients of H0.

The proof of Theorem 5 actually yields the following conclusion.

Theorem 7 Let B be a region with C2 boundary curve. Let f = 1Bc ·φ where φ is a C2 function
of compact support. Fix p > 2/3. The curvelet coefficients at scale s > 0 obey the inequality

(
∑
Ms

|αµ|p)1/p ≤ Cp, ∀s > 0.

We now make a remark about the similar sparsity properties of curvelets and dual curvelets
expansions.

Theorem 8 Suppose that ~v is an irrotational vector field with L2 components of compact sup-
port. Suppose we expand each component vj in a curvelet expansion, and the curvelet coefficients
Aµ,j at scale s > 0 obey the inequality

(
∑
Ms

|Aµ,j |p)1/p ≤ Cp, ∀s > 0.

Then the vector curvelet coefficients
αµ = [~w−µ , ~v]

obey also the inequality
(
∑
Ms

|αµ|p)1/p ≤ C ′p, ∀s > 0.

Now we apply these results on sparsity of representation of ∇H0 to infer properties of H. We
use for our tool the biorthogonal expansion of ∇H0. With all definitions as in Section 3 above:

κs · [∇H0, ~w−µ ] = 〈f, γµ〉, µ ∈M ′.

It follows from this identity that summability properties of the vector curvelet analysis of ∇H0

give summability properties of the curvelet coefficients of H. Combining this with Theorem 8
gives

Corollary 1 Let H(x) = log+(||x||) as above. The curvelet coefficients of H0 at scale s > 0
obey the inequality

(
∑
Ms

|22s · αµ|p)1/p ≤ Cp, ∀s > 0.

19



From this, and some elementary analysis relating `p norms to m-term approximations, we
get the following:

Corollary 2 Let H(x) = log+(||x||) as above. For m > 0 define the m-term approximation to
H0 as follows. Let µ1, . . . , µm denote the indices of the m largest-amplitude curvelet coefficients
of H0. Define

H̃0
m =

m∑
i=1

〈H0, γµi〉γµi .

Then for each δ > 0,
‖H0 − H̃0

m‖2 ≤ Cδ ·m−3+δ, m ≥ 1.

Corollary 3 Let I be as above. For m > 0 define the m + 1-term approximation to I as above.
Then for each δ > 0,

Err(I, Ĩm+1) ≤ Cδ ·m−3+δ, m ≥ 1.

8.3 General Case

Our analysis of the case H(x) = log+(||x||), immediately suggests the following:
Conjecture. For a typical C2 curve bounding a nice region B, the rate of best m-term

curvelet approximation to H0 is O(m−3+δ) for each δ > 0.
The key point is to use potential theory to observe that the case of a circle should be rather

typical.
If we consider ∇H when the potential H derives from a general C2 curve, we are studying

what is well known in potential theory as the “gradient of a single-layer potential”.
Existing literature of single-layer potentials shows that quite generically, the component of

the gradient normal to the curve C will have a step discontinuity across the curve C. Consider
for example, Coifman and Meyer, [15], Chapter 12, “Potential Theory in Lipschitz Domains”.
Away from the discontinuity, the gradient will obey uniform C2 smoothess estimates; so each
component of the gradient exhibits qualitatively the same properties which we used for the case
of the circle. A rigorous proof of our conjecture would of course require a formalization of the
above observations into suitable estimates.

In short, results for approximation of curvilinear integrals follow immediately from bounds
for approximation of objects with singularities along C2 curves, when the singularity across the
curve C is not a discontinuity but instead has a discontinuous gradient.

8.4 Comparison to Fourier and Wavelets

We can compare the above result to rates for Fourier and Wavelet approximation.
For Wavelet approximation, note that for compactly supported wavelets, one can construct

wavelet Riesz Bases for the Laplacian in the obvious way, and then use them to build isometries
between H and I using wavelets rather than curvelets. One then builds m+1-term dual wavelet
approximations ĨW

m+1 to I by wavelets, which correspond in a natural way to orthonormal wavelet
approximations to H0. Proceeding in this fashion, (or, in fact, by direct calculation) we get the
rate result

Err(I, ĨW
m ) ³ m−3/2. (43)

The main calculation underlying this result yields the following conclusion. There are order
2s Wavelet coefficients of object H0 at scale 2−s which correspond to spatial locations ‘on the
singularity’, and these wavelet coefficients are of size ≈ 2−2s. It follows that, in general, there
are O(N) coefficients of size ≥ c ·N−2. Now as the wavelets are orthonormal, the best m-term
approximation to H0 is built from the m terms having the m largest amplitudes. It follows that

‖H0 − H̃0,W
m ‖2 ³ m−3/2.

This leads to (43).
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Our isometry approach does not work well with the Fourier series basis for L2[−π, π)2, as H0

is not supported in [−π, π)2. However, direct calculations give the following result for a certain
m + 1-term dual Fourier approximation ĨF

m+1 to I, analogous to (41):

Err(I, ĨF
m) ³ m−3/4. (44)

We observe again the pattern that Curvelet decompositions achieve roughly twice the ap-
proximation rate of Wavelet decompositions and roughly four times the rate of Fourier decom-
positions.

References

[1] Ahlfors, L. V. (1966). Complex Analysis. McGraw-Hill.

[2] Candès, E. J. (1999). Harmonic analysis of neural networks. Appl. Comput. Harmon. Anal.
6 197–218.

[3] Candès, E. J. (1998). Ridgelets: Theory and Applications. Ph.D. Thesis, Department of
Statistics, Stanford University.

[4] Candès, E. J. (1999). Monoscale Ridgelets for Image Compression and Denoising.
Manuscript.

[5] Candès, E. J., and Donoho, D. L. (1999). Ridgelets: the key to high-dimensional intermit-
tency?. Phil. Trans. R. Soc. Lond. A. 357 2495-2509.

[6] Candès, E. J., and Donoho, D. L. (1999). Curvelets. Manuscript.
http://www-stat.stanford.edu/ donoho/Reports/1999/curvelets.pdf

[7] Candès, E. J., and Donoho, D. L. (2000). Recovering Edges in Ill-Posed Inverse Problems:
Optimality of Curvelet Frames. Technical Report 2000-16, Department of Statistics, Stan-
ford University.

[8] Candès, E. J., and Donoho, D. L. (2000). Curvelets: a surpisingly effective nonadaptive
representation of objects with edges. in Curve and Surface Fitting: Saint-Malo 1999 Albert
Cohen, Christophe Rabut, and Larry L. Schumaker (eds.) Vanderbilt University Press,
Nashville, TN. ISBN 0-8265-1357-3

[9] Donoho, D. L. (1998). Orthonormal Ridgelets and Linear Singularities Technical Report
1998, Department of Statistics, Stanford University. To appear, SIAM J. Math. Anal.

[10] Frazier, M., and Jawerth, B. (1985). Decomposition of Besov Spaces. Indiana Univ. Math
J. 34 777-799.

[11] Frazier, M., and Jawerth, B. (1990). A discrete Transform and Decomposition of Distribu-
tion Spaces. Journal of Functional Analysis 93 34-170.

[12] Frazier, M., Jawerth, B., and Weiss, G. (1991). Littlewood-Paley Theory and the study of
function spaces. NSF-CBMS Regional Conf. Ser in Mathematics, 79. American Math. Soc.:
Providence, RI.
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